V-2 Rocket
V-2 ロケットミサイル
「V2ロケットは、第二次世界大戦中にドイツが開発 した世界初の軍事用液体燃料ミサイルであり、弾道ミサイルである。それ以前から開発されていたアグリガット(Aggregat)ロケットシリーズのA4ロ ケットを転用・実用兵器化し、宣伝大臣ヨーゼフ・ゲッベルスが報復兵器第2号(Vergeltungswaffe 2)と命名したため、この名で呼ばれることとなった。この兵器は同大戦末期、主にイギリスとベルギーの目標に対し発射された。後にアメリカ合衆国でアポロ 計画を主導したヴェルナー・フォン・ブラウンが計画に参加し設計を行ったことで知られる」V-2ロケット(出典:https://goo.gl/dZUbrU)
「1927年に結成されたドイツ宇宙旅行協会は、 宇宙旅行を目指して1929年頃から液体燃料ロケットを研究していた。ヴェルサイユ条約で大型兵器の開発を禁止されていたヴァイマル共和国の陸軍は、 1932年に同協会が開発中の液体燃料ロケットが持つ長距離攻撃兵器としての可能性に注目、ヴァルター・ドルンベルガー陸軍大尉は、資金繰りに悩むアマ チュア研究者だったヴェルナー・フォン・ブラウンらの才能を見抜き、陸軍兵器局の液体燃料ロケット研究所で研究を続けるよう勧誘した。/フォン・ブラウン らはこれに応じて同研究所に参加、1934年12月、エタノールと液体酸素を推進剤とする小型のA2ロケット(質量 500 kg)の飛行実験を成功」(出典:https://goo.gl/dZUbrU)
V-2ロケット製造における奴隷労働
「V2
は、ドイツ中部ノルトハウゼン近郊の岩塩採掘抗を利用した工場で、近くのミッテルバウ=ドーラ強制収容所収容者により生産された。その多くはフランスとソ
連の戦争捕虜で、劣悪な環境の中、約10,000人が過労死したり警備員に殺された。皮肉にもこの数は V2
の攻撃による死者数を上回る。最初に運用段階に達したのは第444砲兵大隊で、1944年9月2日、当時解放されたばかりのパリを攻撃すべく、ベルギーの
ウッファリーズ(フランス語:
Houffalize)近くに発射基地を設営した。翌日には第485砲兵大隊がロンドン攻撃のためにハーグに移動した。数日間は打ち上げ失敗に終わった
が、9月8日両部隊とも成功した。続く数か月間に発射された総数は次の通り。 //ベルギーに対して
アントウェルペン - 1610
リエージュ - 27
ハッセルト - 13
トゥルネー - 9
モンス - 3
ディースト - 2
フランスに対して
リール - 25
パリ - 22
トゥールコアン - 19
アラス - 6
カンブレ - 4
イギリスに対し
ロンドン - 1358
ノリッジ/イプスウィッチ - 44
地上部隊が爆破に失敗したライン川鉄橋を目標に
ルーデンドルフ橋(レマーゲンの鉄橋) - 11
オランダに対し
マーストリヒト - 19。そして、1945年3月3日、連合国軍はハーグ近郊の V2
と発射設備を大規模爆撃で破壊しようと試みたが、航法誤差のためベザイデンハウツェ区域が破壊され、市民およそ500名の死者を出した。」
岩塩坑跡に設置された生産ライン/ドーラの死体焼却
炉
ヒトラーの大型兵器信仰
「V2
の軍事的効果は限定的であった。ごく初歩的な誘導システムは特定目標を照準できず、命中精度は7 - 17
kmと現在の基準では実用的でないくらい低かった。コストは4発で概ね爆撃機1機に匹敵した(爆撃機はより遠距離の目標に、より正確に、遥かに多くの弾頭
を、幾度も運搬可能)。ただし心理的効果はかなり大きく、爆撃機や特徴的な唸り音が存在するV1飛行爆弾と違い、超音速で前触れもなく飛来し、既存兵器で
は迎撃不可能な V2
は、ドイツにとって有用な兵器たりえた。特に、ロンドン市民は連日の攻撃に多大な不安に晒され、市街地への被害も甚大であった。最大射程320
kmで最大射程時に飛行時間は5分半で高度93.3
kmに到達した。発射されたミサイルのおよそ4%が発射後30秒間で故障した。およそ6%が弾頭の暴発やタンク爆発で空中分解した。また再突入時にも構造
破壊で多数が失われた。結果、ロンドンへ向け発射された1152機中、到達したのは半分以下517機に過ぎなかった。アマトール爆薬が弾頭に使用された理
由は大気圏再突入時の暴発を防ぎ、信頼性を高めるために低感度爆薬を選択しなければならなかったからである。一方、搭載された触発信管は高感度で連合国側
で発見された不発弾頭はわずか2基のみだった[5]。
反面迎撃不可能ゆえに、V2
攻撃阻止には発射基地を制圧する必要があり、かえって連合軍のドイツ侵攻を早める動機づけにもなった。そのような意味ではドイツ敗北を早めた兵器とも言え
る。一方、同じ報復兵器のV1飛行爆弾は低速で迎撃可能な分、かえってそのために戦力を割かねばならず、戦略的には V2
より効果があったとも言える。V1飛行爆弾はV2ロケットのおよそ1/10の費用で開発、生産され、V2とは異なり、入手の比較的容易な燃料のみが必要で
徐々に蒸発する極低温の液体酸素のような酸化剤は不要で、弾頭重量は850
kgあり、V2と比較し破壊力は遜色なかった。その結果、24,200機のV1が発射されたのに対しV2は3,500機発射で、V1は平均110機/日の
発射に対しV2は16機/日の発射に留まった[6]。実質的に与えた損害はV2よりもV1の方が多かったことが戦後の調査で判明している。V1の弾頭は
V2の弾頭のように大気圏再突入による加熱がないため、暴発せず、V2の弾頭は垂直に近い角度で高速で建物や地面に陥入してから爆発するので爆風が緩和さ
れたが、V1の弾頭は比較的浅い角度で低速で突入して建物の表面付近で爆発するので爆風の及ぼす範囲が広かった[6]。さらにV2は前触れなく突然落下す
るのに対してV1の発する特有の音は恐怖をもたらす心理的効果があった[6]。
上記の欠点を嫌った軍需大臣アルベルト・シュペーアは、より小型で使い勝手の良い兵器の開発を望んだが、大型兵器による戦局打破にこだわったヒトラーに押
し切られ、製造が続けられた。」
◎連合国側へのV-2技術移転
「戦争末期には、V2ロケットと技術者たちをできる だけ多く獲得するレースが行われた。1945年8月半ばにアメリカ軍はペーパークリップ作戦の下で貨車300両分の V2 と部品を鹵獲、オルガー・N・トフトイ大佐は、ジョージ・パットン大将率いる第3軍に投降したフォン・ブラウンやドルンベルガー少将をはじめとする126 人の主要な設計技術者をアメリカに連れ帰った[7]。ニューメキシコ州ホワイトサンズ・ミサイル実験場には215機分の燃焼器と180機分の推進剤タンク と90機分の尾翼と100機分の黒鉛の偏流板と200機分のターボポンプが持ち込まれた。当初は大半のドイツ製ロケットはアメリカで飛行可能な状態で持ち 帰られたと考えられたが、実際にはどれも飛行可能ではなく、ゼネラルエレクトリック(GE)社が陸軍工廠とV2組み立てと発射の契約を交わした。 接収され、ホワイトサンズに持ち込まれたV2の部品は豊富にあったものの、制御装置のような機材は逼迫していた[4]。ドイツから接収したジャイロスコー プは50台のみで、大半は劣悪な状況であった。それぞれのロケットには2台のジャイロスコープが必要で、他にも配電盤の多くの配線が不足していることが判 明したため、試射計画の後半にはGE社はジャイロスコープと誘導装置を製造するとともに、経年劣化していたドイツ製推進剤配管を交換した。V2の52%に 変更が施されホワイトサンズから発射され、71%は設計重量を超えた。2,200 lb (1,000 kg)の弾頭を含むV2の標準的な空虚重量は8,000 lb (3,600 kg)だったが、発射されたロケットの空虚重量はペイロードが19%増えたことにより9,218 lb (4,181 kg)になり、1951年以降は全てのV2に改良が施され、47%以上ペイロードが追加されたことで最大全備重量は28,400 lb (12,900 kg)になった[4]。 全ての部品は組み立て前に性能と状態が検査され、修理や調整が必要な部品は再度試験された。大型部品は組み付け前に完全に試験が実施され、2回の総合試験 が組み立て棟を離れる前に実施され、射点では総合試験が前日に実施され、発射当日に推進剤が充填された[4]。 その後数年間、アメリカのロケット計画は未使用のV2ロケットを活用して進められた。これらの改良型V2のひとつである2段式の「バンパー」は、1949 年2月24日の試験飛行で当時の高度記録である 400 km を達成した。 V2の打ち上げは68%が成功したが、失敗した打ち上げからも多くの貴重な情報が得られた。1946年から1952年にかけて合計67機のV2ロケットが ホワイトサンズから発射され、多くの価値ある情報をアメリカにもたらした[4]。 フォン・ブラウンはアメリカ陸軍のレッドストーン兵器廠に勤務し、1950年からはアラバマ州ハンツビルに居住。後にレッドストーン、ジュピター、ジュピ ター-C、パーシングそしてサターンなど、ほぼ全てのアメリカのロケットの生みの親となった。 アメリカ海軍では接収したV2を小型化したヴァイキングを開発して後に人工衛星打ち上げ用のヴァンガードに発展させた。 ソ連もまた多数のV2ロケットと250人余りの技術者を捕らえた。元共産党員の妻を持つヘルムート・グレトルップ(Helmut Gröttrup)がこのグループを率いた。彼らはドイツ国内でロケット研究を継続できるという条件でソ連軍に協力したが、戦後、しばらくの間ドイツ国内 でソビエト人技術者達と共に開発作業に従事したが、1946年にソ連は突如、彼らをソ連国内の孤島に隔離収容して、V2ロケットをもとに多くの新しいミサ イルの開発を行なわせた[8][9]。セルゲイ・コロリョフのチームはV2ロケットの複製R-1を製作する。コロリョフはドイツ人に教えを請うたり、ドイ ツ人達が隔離されている島を訪問したことは無かったが、対照的にOKB-456のヴァレンティン・グルシュコは積極的にドイツ人達からノウハウを吸収した [10]。OKB-456ではソビエト人のチームによってドイツから帰国直後から改良型のエンジンの開発に着手された。彼らは計算によりターボポンプの回 転数を高めて推進剤の供給量と燃焼室の圧力を上げることで、推力を大幅に増大させることが可能であると理解していた[10]。この時、ドイツ人技術者達に は新設計のエンジンの詳細は知らされず、RD-100の生産が軌道に乗ってからは彼らの支援はもはや必要なかった[10]。 グレトルップを首領とするドイツ人のチームはG-1というロケットの設計を進めた。G-1は大きさはV2と同じだが、推進剤のタンクが荷重を負担するよう にして構造体を軽量化することにより、推進剤の搭載量を増やし、大気圏再突入時に弾頭を分離式にして、誘導、制御を地上から電波で行うようにして機載の誘 導装置を可能な限り簡略化する仕様だった。推進剤のタンクに荷重を負担させるという概念自体は既に1920年代初頭にヘルマン・オーベルトが彼の著作でタ ンクに荷重を分担させるべきであると記していて、1941年にペーネミュンデを訪問時にも提言していたが、当時は軽量化よりも早期の実用化が優先されてお り、採用されなかった[10]。エンジンの配置も大幅に変更され、推進剤を供給するポンプを駆動するタービンは燃焼室からのガスで直接駆動された。新しい 無線制御装置により、精度が向上した。速度は単に計測されただけでなく、無線で軌道を修正された。エンジンの推力を制御することで速度を調整することは画 期的で1955年にこの装置(RKS)は開発されたが、1957年にR-7大陸間弾道ミサイルに搭載されるまで実用に供されなかった[10]。誘導装置も 簡略化され、1自由度のジャイロスコープが備えられ、V2ではAskaniaという油圧式の操舵装置が搭載されていたが、G-1では空圧式に変更され、こ れにより付随装置も大幅に軽量化され、構造体の重量は3.17トンから1.87トンに大幅に軽量化され、弾頭重量は750kgから950kgへ増加して、 尾翼は小型化され、機体は軽合金製になった[10]。ドイツ人技術者達はロケットのソビエトの国産化に貢献したが、ドイツ人の設計によるものは一つも生産 されたものはなかった。1950年代にソ連の技術者が十分な経験を積むと、ドイツ人技術者は東ドイツに帰国させられた。 ドイツ人技術者のノウハウをもとに、ソ連が開発したミサイルにはV2のコピーR-1、射程延伸型R-2、R-3(計画のみ)、ソ連で最初に核弾頭を搭載し たR-5およびR-5M(NATO名:SS-3 Shyster)などがある。スカッド(NATO名:SS-1b/c SCUD、ソ連名称:R-11およびR-17)ミサイルはそれらの技術から発展した戦術ミサイルである。 同様にイギリスは少数のV2ミサイルを捕獲し、いくつかを北ドイツの射場でバックファイア作戦として打ち上げた。しかし、関係した技術者はすでに、試験完 了後にアメリカに移ることに合意していた。同作戦の報告は、あらゆる支援手順、専用の車両そして燃料合成を含む広範囲な技術文書を残した。 フランス軍備研究局(DEFA)もまたドイツからの資料を得て、イギリスが追求をあきらめたペーネミュンデ系のドイツ人技術者をヴェルノンに招聘し、弾道 技術・航空力学研究所(LRBA)を設立、陸軍の将来ミサイルの開発を行わせることとした。ジャン=ジャック・バールもLRBAに参加したほか、ドイツ人 研究者にはアリアンのバイキングエンジンを生み出したハインツ・ブリュンゲルや磁気軸受を開発したヘルムート・ハーベルマン(フランス語版) (Helmut Habermann)も含まれていた。フランスでは欧州での第二次世界大戦終結後のわずか1週間後の1945年6月12日に戦時中のドイツで開発されたロ ケット技術を入手するためのCEPA(Centre for Study of Guided Missiles)が設立された[11]。1946年の5月から9月にかけてフランスはこの目的のために30人のドイツ人技術者達を雇用してヴェルノンに LRBAの施設を設立した。1946年8月にこのグループは既に後にアリアンロケットへと発展する液体推進系の開発に着手していた。2段階の計画が策定さ れた。先ずはフランス国内でV2ロケットを量産と試験施設が必要だった。そこではV2ロケットの発展型であるA8の開発と量産が予定された[11]。 1946年11月にアルジェリアのColomb-ベシャール近郊の施設がV2の飛行試験のために選定された[11]。試験は順調に進むかに見えたが、 1947年初頭にアメリカとソビエトがフランスが必要とした30機のV2の取得を阻み、そのため、アルジェリアで飛行試験を開始することが出来なくなっ た。LRBAのドイツ人技術者達は4211計画の一環でフランスがA8の飛行試験を実施できるように開発を支援した。並行してジャン=ジャック・バールの チームは4212計画の一環として純粋なフランス製ロケットであるEA1941の開発を進めた[11]。 A8を基に計画されたシュペルV-2ロケットは外見こそV2ロケットに似ていたものの、推力は40トンに強化され、戦略兵器として有効な推進剤はケロシン と常温でも貯蔵可能な硝酸を酸化剤として使用するものになった。開発は主に理論面と硝酸の取り扱いと推力40トンのエンジンのガス発生器の地上試験が実施 されたが、予算を並行する2計画に投じることは出来ないという政府の判断により、試作機を製造するための予算は拠出されず、1948年にシュペルV2計画 は中止され、4トンの推力のエンジンを備えた1/10サイズのヴェロニク/4213計画になった[11]。 LRBAの任務はV2の改良であった。1946年から1949年にかけてドイツのフランスの占領地でドイツ人技術者達に開発を進めさせた[11]。A8 の計画を基にしたシュペルV-2と呼ばれた改良型V2では製造が簡素化され、タンク構造とより剛性の強い特殊鋼の採用でエンジン推力を40tに向上させ、 射程を700kmに向上させる計画であった[11]。しかし、軍はLRBAにソ連爆撃機の脅威に対抗するべくパルカ(Parca)長距離対空ミサイルの開 発を要請し、DEFAは1949年に計画の棚上げを決定した。対空ミサイル計画は試作機が要求を満たせない状態が続き、1958年にアメリカのホークミサ イルのライセンス生産が決定したことで計画は停止されたものの、追跡装置やアクチュエーターに関する研究はホークミサイルに対するLRBAの関与を深める ことができた。 一方、バールのチームと並行して開発を進めていたドイツ人の技術者のチームは1949年により技術的難易度の低い推力4トンの液体燃料エンジンを搭載し、 高度100kmの弾道飛行中に60kgの科学機器を運ぶことを目標としたヴェロニクロケットを開発した。誘導システムを持たず、推進剤加圧システムにター ボポンプがないなど簡素化が行われたものの、当初は不安定燃焼の問題に突き当たった。しかし、1954年に解決を果たし、アルジェリア南部のアマギールか ら試験機の打ち上げが行われた。以後、こちらがフランスのロケット開発の主流になる。 その後、国際地球観測年の観測の一環として上層大気の研究が行われることとなり、より強力なヴェロニクAVIが作られた。これは200kmの高度に装置類 を投入することを目的とした。予算上の理由から初打ち上げは1959年3月7日に行われた。これは失敗だったものの、3日後に行われた2号機は137km の高度に達し、上層大気で風を測定する科学実験を行うことができた。同型機は1959年から1969年までの間に48機が打ち上げられ、81.5%の成功 を記録した。続いてヴェロニクAGIが開発され、生き物への加速度や振動の影響を研究するために利用された。ヴェロニクAGIは高度365kmに到達して いる。 カナディアン・アローではA4のエンジンのレプリカを使用する予定で地上試験まで実施された[12]。」
+++
Links
リンク
文献
その他の情報