はじめに読んでください

進化論的に考えるとはどういうことか?

What does it mean to think in evolutionary terms?

池田光穂

進化論的に考えるとはどようなことか?(ウィキペディア「進化」より)(→ 「ダーウィン『種の起源について』1859年」はこちら

進化
「進化とは、生物個体群の性質が、世代 を経るにつれて変化する現象である[2][1]。また、その背景にある遺伝的変化を重視し、個体群内の遺伝子頻度の変化として定義されることもある[3] [4]。この定義により、成長や変態のような個体の発生上の変化は進化に含まれない[1][2]。 また狭義に、種以上のレベルでの変化のみを進化とみなすこともあるが、一般的ではない[3]。逆に、文化的伝達による累積的変化や生物群集の変化をも広く 進化と呼ぶこともある[3]。日常表現としては単なる「変化」の同義語として使われることも多く、恒星や政治体制が「進化」するということもあるが、これ は生物学でいう進化とは異なる[4]。 進化過程である器官が単純化したり、縮小したりすることを退化というが[3]、これもあくまで進化の一つである。退化は進化の対義語ではない。」
古生物学
「進化をはっきりと示す化石証拠はダー ウィンの時代には乏しかったが、現在では豊富に存在する。まず全体的なパターンとして、単純で祖先的と思われる生物は古い地層からも見つかるが、複雑で現 生種に似た生物は新しい地層からしか見つからない[8]。 化石証拠の豊富な生物については、化石を年代順に並べることで、特定の系統の進化を復元することもできる。プランクトンは死骸が古いものから順に連続的に 堆積していくので、このような研究が容易であり、有孔虫や放散虫、珪藻の形態が徐々に進化し、時には種分化する過程が確認できる[9][10]。プランク トン以外にも、三葉虫の尾節の数の進化を示す一連の化石などがある[10]。」
ミッシング・リンク
「進化を否定する創造論者は、分類群間 の中間的な特徴を示す化石が得られないことを指して「ミッシング・リンク」と呼んでいる。しかし、分類群間の移行段階と考えられる化石はすでに一部得られ ている[11][12]。分類群の起源となった種そのものを見つけるのは確かに困難だが、それに近縁な種の化石があれば、進化過程を解明するのに充分であ る[11]。たとえば爬虫類と鳥類の特徴を併せ持つ化石には有名な始祖鳥に加えて、多数の羽毛恐竜がある[13][14]。クジラの進化過程は、時折水に 入る陸生哺乳類であったインドヒウスに始まり、徐々に水中生活に適応していく一連の化石から明らかになっている[15][16]。現在の魚類と両生類をつ なぐ移行化石としてはエウステノプテロン、パンデリクチス、アカンソステガ、イクチオステガなどが知られていたが、さらにパンデリクチスよりも両生類に近 く、アカンソステガよりも魚類に近いティクターリクが2006年に発表された[17][18]。無脊椎動物では、祖先的なハチの特徴と、より新しく進化し たアリの特徴を併せ持つアケボノアリなどの例がある[19]。移行化石は次々と発見されており、たとえば2009年には、鰭脚類(アシカやアザラシ)と陸 上食肉類との中間的な特徴を示す化石[20]や、真猿類の祖先に近縁だと考えられるダーウィニウスの化石[21]が報告されている[22]。人類が他の類 人猿に似た祖先から進化してくる過程を示す化石も見つかっている[23][24]。」
生物地理学
「生物の分布がいかにして成立してきた かを探る分野である生物地理学は、進化を支持する強力な証拠をもたらす。進化生物学者のコインによれば、創造論者は生物地理学上の証拠に反論することがで きないため、無視を決め込んでいるという[25]。 火山活動などによる海底の隆起によってできた、大陸と繋がったことのない島を海洋島と呼ぶ。ガラパゴス諸島やハワイ、小笠原諸島といった海洋島の在来生物 相には海を渡れない両生類、コウモリを除く哺乳類、純淡水魚がほとんど、あるいは全く含まれないのが普通である。それに対して大陸と繋がった歴史のある島 には、哺乳類や両生類が普通に分布している。しかも島にすむ生物は、ほとんどの場合最も近い大陸の生物と近縁である。このようなパターンでは、生物が地球 の歴史の中でその分布を広げながら進化してきたと考えない限り理解できない[26][27]。 地域が違うと、似たような生息環境であっても異なる生物が分布することがあり、これも進化の証拠となる。同じ砂漠でも新世界にはサボテン科、旧世界には キョウチクトウ科やトウダイグサ科の乾燥に適応した植物が生息している[28][29]。 ダーウィンの時代には知られていなかったが、地球の歴史上、大陸は長い時間をかけて移動し、離合集散を繰り返してきた(大陸移動説)。生物の分布のなかに は、かつて繋がっていた大陸に共通祖先がいて、大陸の分裂に伴って系統が分岐したと考えることでうまく説明できるものも多くある。たとえばシクリッド科の 淡水魚や走鳥類の分布は、かつてのゴンドワナ大陸が複数の大陸に分裂した過程で分岐してきたことで成立したと考えられる[30]。 輪状種の存在も、生物がわずかな変化を累積して連続的に進化してきたことの傍証となる。輪状種とは、ある場所では互いに交配せず、別種として区別できる生 物が、実は多数の中間型によって連続している場合を指す[31]。ヨーロッパ北西部ではセグロカモメとニシセグロカモメが互いに交配せず別種であると識別 できるが、そこから東に向かい、北極の周りを一周してヨーロッパに戻ると、ニシセグロカモメが次第に変化してセグロカモメにいたる一連の亜種が観察でき、 明瞭な種の区別はない。 」
相似と相同
「進 化の証拠は化石だけではなく、現生生物の形態を比較することからも得られている。たとえば陸上脊椎動物は外見上非常に多様であり、コウモリや鳥のように飛 翔するものまで含まれる。それにもかかわらず、すべて基本的には同一の骨格を持ち、配置を比較することで相同(進化的な由来を同じくする)な骨を特定する ことができる。このことは、陸上脊椎動物が単一の共通祖先を持ち、祖先の形態を変化させながら多様化してきたことを示している[32][33]。それぞれ の種が独立に誕生したとしたら、鳥の翼と哺乳類の前脚のように全く機能の異なるものを、基本的に同一の骨格の変形のみで作る必然性はない。 機能が異なっていても由来と基本的構造を同じくする相同とは逆に、由来や構造の異なる器官が同一の機能を果たし、類似した形態を持つことを相似という。た とえばコウモリと鳥、翼竜はどれも前肢が翼となっているが、翼を支持する骨は大きく異なっている[34]。鳥は羽毛によって翼の面積を大きくしており、掌 や指の骨の多くは癒合して数を減らしているのに対し、コウモリは掌と指の骨を非常に長く発達させて、その間に膜を張ることで翼を構成している。その一方 で、翼竜の翼は極端に長く伸びた薬指1本で支持されている。これは、翼を持たなかった共通祖先から、翼を持つ系統がそれぞれ別個に進化してきた(収斂進 化)と考えれば合理的に理解できる。」
痕跡
「進化がもともとの形態を改変して進ん できたのだとしたら、生物には祖先の形態の名残が見られるはずである。実際に痕跡の例は枚挙に暇がなく、飛べない鳥の持つ痕跡的な翼、洞窟に住むホラアナ サンショウウオの痕跡的な眼、ヒトの虫垂などが挙げられる[35][36]。このような現象は、退化と言われ、進化の一側面をなすと考えられる。これらの 器官は必ずしも何の機能も持たないわけではないが、本来の機能を果たしていた祖先からの進化を考えない限り、その存在を説明することはできない[35]。 同様の証拠は解剖学のみならず、遺伝子の研究からも得られている。分子生物学の研究により、生物のゲノムには多数の偽遺伝子が含まれることが明らかになっ た。偽遺伝子とは、機能を持つ遺伝子と配列が似ているにもかかわらず、その機能を失っている塩基配列のことである[3]。偽遺伝子は、かつて機能していた 遺伝子が、環境の変化などによって不要になり、機能を失わせる突然変異が自然選択によって排除されなくなったことで生じると考えられている。一例として、 嗅覚受容体の遺伝子が挙げられる。多くの哺乳類は嗅覚に強く依存した生活をしているため、多数の嗅覚受容体遺伝子を持つ。しかし視覚への依存が強く嗅覚の 重要性が低い霊長類や、水中生活によって嗅覚が必要なくなったイルカ類では、嗅覚受容体遺伝子の多くが偽遺伝子として存在している。これは、霊長類やイル カ類が、より嗅覚に依存する生活をしていた祖先から進化したことを強く示唆している[37]。」
不合理な形態
「進化は既存の形態を徐々に変化させて 進んでいくものであり、一から設計しなおすようなことは起こらない[38]。その結果として機能的に不合理な形態に進化してしまうことがある。極端な例は 反回神経である。これは喉頭と脳をつなぐ神経であり、サメではその間を最短に近い経路で結んでいる。しかし、脊椎動物の進化過程で胸や顎の構造が変化する なかで、哺乳類では、この神経は喉頭から心臓の辺りまで下り、その後また上昇して脳にいたるという明らかな遠回りをするようになった。その結果、直線で結 べば数センチメートルでよいはずの神経が、ヒトでは10センチメートル程度、キリンでは数メートルに及ぶ長さになっている[39]。同様に哺乳類の輸精管 は、精巣とペニスを最短距離で結ぶのではなく、尿管の上まで迂回するように伸びている。これは、哺乳類の進化過程で体内にあった精巣が下に下りてきたとき に生じた不合理であると考えられる[40][41]。同様の不合理な形態は、人体にも数多く見られる[42][43]。」
系統分類学
「生物分類学の祖とされるリンネはダー ウィンより古い時代に生きた創造論者だったが、入れ子状の階層的な分類体系を構築した。生物が共通祖先から分岐を繰り返して多様化してきたものだと考えれ ば、入れ子の各階層は一つの分岐点を反映するものとして解釈できる。そのため、形態に加えてDNAの塩基配列を含むさまざまな特徴が、例外はあるもののか なり一致した入れ子状の分類体系を支持するという事実は、共通祖先からの進化によって説明できる[44][45]。 近年ではDNAの比較に基づく系統推定が盛んに行われている。このとき、複数の遺伝子をそれぞれ解析すると、細部は異なるにせよおおまかに一致した系統樹 を支持することが多い。もし生物がそれぞれ別個に起源していたとしたら、異なる遺伝子が同じ傾向を示すと考える理由はないだろう[46]。」
発生生物学
「多細胞生物は一細胞の卵から胚発生の 過程を経て体を形成していく。この過程にも、進化の証拠が多く見られる。 有名なのは、ドイツの生物学者エルンスト・ヘッケルの唱えた反復説である。彼は、「個体発生は系統発生を繰り返す」と言われるように、生物は胚発生の過程 でその祖先の形態を繰り返すと主張した。現在では、この説は必ずしも成り立たないものとされているが、それでも発生過程に進化の痕跡を見て取れるのは確か である[47][48]。たとえば脊椎動物の胚はすべて魚のような形態をしており、哺乳類のように成体では鰓を持たないものの胚も鰓弓を持つ[47]。」
観察された進化
「古典的な例はオオシモフリエダシャク の工業暗化である。このガには白色型と黒色型がいるが、工業の発展に伴う煤煙で樹木表面が黒く汚れた結果、捕食者である鳥から姿を隠しやすい黒色型のガが 急激に頻度を増した[50]。次いで有名なのはガラパゴスフィンチの事例で、グラント夫妻らの30年以上にわたる長期の調査により、環境変動に伴う自然淘 汰が嘴の進化を引き起こしたことが確認されている[51][52]。病原菌や害虫に抗生物質や殺虫剤で対処しようとすると、急速に薬剤抵抗性が進化するこ ともよく知られている[53]。」
実験進化
「ロシアの神経細胞学者、リュドミラ・ ニコラエブナ・トルットとロシア科学アカデミーの遺伝学者、ドミトリ・ベリャーエフは共同研究でキツネの人為選択による馴致化実験を行った[54] [55]。100頭あまりのキツネを掛け合わせ、もっとも人間になつく個体を選択して配合を繰り返すことで、わずか40世代でイヌのようにしっぽを振り、 人間になつく個体を生み出すことに成功した。同時に、耳が丸くなるなど飼い犬のような形質を発現することも観察された[56][57][58]。これはな つきやすさという性質が、(自然、あるいは人為的に)選択されうることを示している。 人為的に進化を引き起こす研究も行われている。エンドラーはグッピーを異なる環境に移動させることによって、雄の体色が捕食者と雌による配偶者選択に応じ て進化することを明らかにした[59][60]。レンスキーらは大腸菌の長期培養実験によって、代謝能力の進化を観察している[61][62]。また人為 淘汰による進化は、農業における品種改良に応用されている[63]。植物では、倍数化による種分化(後述)を実験的に再現することにも成功している [64]。」
遺伝的変異
「ある形質について変異が全くなけれ ば、その形質は進化しない。変異があっても、その変異が次世代に伝わる傾向がなければ(すなわち、遺伝しなければ)進化は起こらない。遺伝において親から 子に受け渡されるのは遺伝子であり、その実体はDNAの塩基配列情報である。DNAは細胞分裂に際して複製されるが、その過程でエラー、すなわち突然変異 が起こることがある。これによって生じる個体差が遺伝的変異である。さらには、突然変異によって生じた遺伝子が有性生殖や接合によって組み換えられること によっても、新しい遺伝的変異が生じる[65]。 DNA配列上には現れないが遺伝子発現の変化による遺伝形質の変化についても、研究が進められている。塩基配列の変化を伴わない遺伝子の制御はエピジェネ ティクスと呼ばれ、DNAのメチル化による遺伝子発現抑制やヒストンの化学修飾による遺伝子発現変化などがある[66]。しかしこの様な化学修飾は細胞分 化に大きな役割を持ち、化学修飾が多世代を超えて長期間維持されることはないため、進化の原動力になるか疑問である。ただゲノムには狭義の遺伝子(コー ディング領域)のみでなく遺伝子の制御領域(プロモーターやシスエレメント)があり、遺伝子の制御領域の突然変異が進化の原動力になる事がある[67]。 一般的に、突然変異は「ランダム」に起こると言われる。これは、環境に応じて適応的な変異がより生じやすくなるというようなことはない(寒いからといっ て、毛皮を厚くする突然変異が暑い場所よりも生じやすくなることはないなど)という意味であり、あらゆる意味でランダムというわけではないということに注 意が必要である[68][69][70]。ラマルクは、より多く使われた器官が発達し、その発達が次世代に遺伝することで適応的な遺伝的変異が生じるとし た(用不用説)が、この説は誤りであることがわかっている[71]。突然変異はこのような説を否定する意味においてのみ「ランダム」である。実際には突然 変異はあらゆる意味で「ランダム」とは言えず、たとえば放射線や発癌性物質によって誘発される。 突然変異は発生の過程を変化させることによって表現型を変化させるので、変化の範囲には限りがある[72]。この制約がどの程度実際の進化に影響するかに ついては議論がある[73]。 このほか、他の生物が持つ遺伝子が他生物に取り込まれることでその遺伝子を獲得することがある。(遺伝子の水平伝播)」
自然選択
「一部の遺伝的変異はそれを持つ生物個 体の適応度(生存と繁殖)に影響する。その多くは適応度を低下させるので、それを持つ個体は子孫を残せず、変異は消失する(負の自然選択)。しかし、なか には適応度を高める突然変異もある。たとえばレンスキーらは大腸菌の長期培養実験のなかで、クエン酸塩を利用できるようになる突然変異がまれに生じるのを 観察した[62]。 適応度を高める対立遺伝子は、それを持つ個体が持たない個体よりも平均して多くの子孫を残すので、個体群内で頻度を増す。この過程を正の自然選択という。 正の自然選択によって、生物個体群は世代を経るにつれてより適応的な形質を持つように進化していく。自然選択は、適応進化を説明できる唯一の機構である [75]。 モリマイマイの殻の色彩には大きな変異がある。 自然選択において有利になる形質は環境条件によって異なる。ヨーロッパに生息するカタツムリの一種モリマイマイの殻の色彩は変異が大きく、個体群によって 色と模様が異なる。これは、生息環境によって捕食者の目を逃れるのに適した色、体温調節に適した色が異なるため、自然選択によって個体群ごとに異なる色彩 が進化したのだと考えられる[76]。形質の適応度がその頻度によって決まることもある。たとえば、もし捕食者が多数派の模様を学習し、まれなタイプの模 様はあまり食べないということがあれば、ある模様の適応度がその頻度が少ないときに高くなる。このような自然選択を頻度依存選択と呼ぶ[76]。 広義には自然選択に含まれるが、性選択も適応度に影響する。性選択は、配偶者をめぐる同性間の競争や、異性による配偶者の選り好みによって起こる選択のこ とをいう。たとえばコクホウジャクという鳥では、長い尾羽を持つ雄が雌に好まれるので、そのような雄の適応度は高くなる[77]。 自然選択は個体あるいは遺伝子を単位として考えられることが多いが、かつては個体の集まったグループを単位とした自然選択(群選択あるいは集団選択)が重 視されていた。かつてのような粗雑な群選択理論は今では否定されているが、グループを含む複数の階層での選択を考慮する複数レベル選択説が提唱されてお り、その重要性について議論になっている[78]。」
遺伝的浮動
「遺伝的変異のなかには、適応度に全 く、あるいはごくわずかしか影響しないものも多い。その場合には、遺伝子頻度はランダムに、確率的に変動することになる。また適応度に影響する場合でも、 確率的な変動の影響は受ける。このランダムな遺伝子頻度の変化を遺伝的浮動という[79]。遺伝的浮動はとくに数の少ない個体群において重要である。その ため、少数の個体が新しい生息地に移住して定着した場合に遺伝子頻度が大きく変化することがあり、これを創始者効果という[80]。 木村資生は、遺伝子レベルの進化においては遺伝的浮動が重要であると指摘した(分子進化の中立説)[81]。分子進化の中立説は、塩基配列のデータをよく 説明できる。表現型レベルでも、適応度上中立な変化であれば遺伝的浮動によって進化することはありうるが、実際にはほとんどないと考えられている[82] (ただし、表現型と分子のそれぞれにおいて、浮動と選択がどの程度重要かについては議論がある[83])。」
形態の進化
「化石が多く見つかっている系統の進化 速度は、より新しい化石と古い化石の形態を比較することで調べることができる。量的な形態進化の速度は、100万年あたりネイピア数倍(約2.7倍)の変 化を1ダーウィンとして定義する[84]。離散的な形態の進化については、いくつかの形質状態を定義して、その変化の回数を数えることで計測できる [85]。分類群の数を利用した進化速度の定義もあり、ある期間におけるある系統がいくつの種(あるいは属などより高次の分類群)に分けられるかによって 進化速度を測定する。たとえば、ウマ類の系統は現生のものを除くと、5000万年の間に8属を経過してきたため、約625万年あたり1属の進化速度で進化 してきたと計算できる[86]。 進化速度は系統によって大きく異なり、進化速度が非常に遅いために祖先の化石種とほとんど変わらない形態を持つものを生きている化石と呼ぶ。ただし、同じ 系統でも進化速度は一定ではない。たとえばハイギョ類は生きている化石として有名であり、確かに中生代以降の進化速度はかなり遅いのだが、古生代において はむしろ急速に進化していた[85]。また、すべての形質の進化速度が同じ傾向を示すわけでもない。ヒトの系統が脳の大きさに関して他の霊長類、たとえば アイアイに比べて急速な進化を遂げてきたのは明らかだが、同時にアイアイの歯はヒトの歯よりも初期霊長類と比べて違いが大きく、歯の形態に関してはアイア イのほうが進化速度が速かったと考えられる[87]。」
分子進化
「分子レベルの進化速度は、単位時間 (あるいは世代数)あたりの塩基置換数として計測できる。分子進化の中立説によれば、世代あたりの塩基置換速度は中立な突然変異率によって決まるため、突 然変異率が一定ならば一定の速度で進化すると予測される。この予測は、塩基配列の比較から系統が分岐した年代を推定する分子時計の根拠となっている [82][88]。 わずかな塩基配列の変化で機能が損なわれるような遺伝子は、中立な突然変異が少ないので、進化速度が遅くなる[89][90]。逆に、もはやその役目を果 たさない偽遺伝子ではほとんどの突然変異が中立になるので、進化速度が非常に速い。たとえば、地中に生息し眼が退化したシリアヒメメクラネズミでは、レン ズを作るタンパク質をコードする遺伝子が偽遺伝子化し、急速に進化している[91]。」
種分化
「1種が2種以上に分岐し、新しい種が 形成されることを種分化という。種の定義は多数あるが、進化生物学においては「相互に交配可能な生物の集団」として定義されることが多い(生物学的種概 念)。したがって種分化は、集団間に生殖隔離が生じることを意味する[93]。 前述したセグロカモメの事例のほか、エシュショルツサンショウウオ[94]などで知られる輪状種の存在は、わずかな進化の累積が種分化を引き起こすことを 示している[95]。 一度に種分化が起こる事例も報告されている。たとえばカタツムリの殻の巻きは単一の遺伝子によって決定されているが、この遺伝子に突然変異が起こって右巻 きになると、巻きの違う個体同士は交尾できないことが多いので、生殖隔離が成立する[96][97]。植物では、倍数体(全ゲノムが倍化した個体)が、も との種と生殖できなくなることによる種分化がかなり頻繁に起こっていると考えられている[98]。」
断続平衡説
「地層中の化石の出現パターンを調べる と、基本的な形態はあまり変化しないで安定な状態にあり、新しい形態をもつ化石は、ある地層に突然現れ、その後長い年月の間、形態はふたたび安定して、あ まり変化しないという傾向がある(ただし、古生物学でいう「突然」とは数万年程度の時間を指す)。古生物学者のエルドリッジとグールドは、このような現象 を断続平衡現象と呼んだ[99]。彼らは、進化は種分化のときにのみ急激に起こり、その他の期間は停滞すると主張した。 断続平衡説は種分化の重要な側面を捉えているという評価もある一方で[100]、批判も多い。たとえば断続平衡説は生物学的種概念に基づく種分化の理論を 援用しているが、化石種は交配可能性ではなく形態に基づいて分類されているため、化石種と生物学的種は必ずしも一致しない[101]。実際に形態の変化を 定量的に追跡できる事例についてみると、断続平衡的な進化を示す系統もあるが、一方で連続的に進化している系統もある[102]。また、断続平衡説は主流 の進化理論に矛盾すると言われたこともあるが、実際には一般的な進化理論の範疇で理解できるものである[103][104][105]。」
生物学以外での「進化
「「進化」という概念は、ダーウィン以 来の進化生物学の成功により有力となったが、生物学の影響を受けて、あるいはそれとは独立に「進化」という概念は、さまざまな学問分野において重要な役割 を果たしている。たとえば、「進化経済学」[117]「進化経営学」「進化心理学」「進化的計算」などは前者の例、「宇宙の進化」[118]は後者の例で ある。 生物学の影響を受け、「進化」概念を研究・分析の中核に据えるとき、進化生物学の進化概念をどの程度忠実に移植するかについての議論は多い[117]。進 化経済学では、意図せざる進化と共に、意図された進化が重要であるとされることが多い[119]。」
進化経済学
「進化経済学(しんかけいざいがく、 英: Evolutionary economics)とは、比較的新しい経済学上の方法論で、生物学の考え方を援用して定式化される。進化経済学の特徴として、経済主体間の相互依存性や 競争、経済成長、資源の制約などが強調される。 伝統的な経済理論は主に物理学の考え方になぞらえて定式化されており、労働力や均衡、弾力性、貨幣の流通速度などの経済用語が、物理学上の概念から名付け られているのも偶然ではない。伝統的経済理論では、まず希少性の定義から始まり、続いて「合理的な経済主体」の存在が仮定される。ここでいう「合理性」と は、経済主体が自らの効用(厚生)を最大化するという意味である。すべての経済主体の意思決定に必要とされる情報はすべて共有され(完全情報)、経済主体 の選好関係は所与のもので、他の経済主体によって影響されないと仮定される。これらの前提条件による「合理的選択」は、解析学的手法、とりわけ微分法に置 き換えることができる。 それに対して、進化経済学は進化論の考え方から派生しており、各経済主体や彼らの意思決定の目的は固定されたものではない。」
進化心理学
「進 化心理学(しんかしんりがく、英語:evolutionary psychology)は、ヒトの心理メカニズムの多くは進化生物学の意味で生物学的適応であると仮定しヒトの心理を研究するアプローチのこと。適応主義 心理学等と呼ばれる事もある。 人間行動進化学会は、進化心理学を「社会学と生物学の視点から、現代的な進化理論を用いて、感情、認知、性的適応の進化などを含めた人間の本性を解明する 学際的な学問」と位置づけている[1]。研究対象には感情、認知などの他、宗教、道徳、芸術、病理なども含まれる[2]。 進化の視点はほとんどの認知科学者に受け入れられており、進化心理学者とそれ以外の認知科学者の境界は曖昧である。したがって本項ではふつう進化心理学者 とは見なされない人物の見解についても言及する。言語の起源や芸術、宗教の起源の探求は進化心理学に含められることがあるが、それは(コスミデスらが定義 したような)狭義の進化心理学よりも進化人類学に近い。」

In mid-July 1837 Darwin started his "B" notebook on Transmutation of Species, and on page 36 wrote "I think" above his first evolutionary tree.

A photograph of Alfred Russel Wallace (1823–1913) taken in Singapore in 1862

In the 1870s, British caricatures of Darwin with a non-human ape body contributed to the identification of evolutionism with Darwinism.

Haeckel showed a main trunk leading to mankind with minor branches to various animals, unlike Darwin's branching evolutionary tree.

The liberal theologian Baden Powell defended evolutionary ideas by arguing that the introduction of new species should be considered a natural rather than a miraculous process.
進化的安定戦略
John Maynard Smith & George Price (1973)が考案した、生物進化における戦略のことである。もし、ある集団のすべての成員が、その戦略を採用する と、他の戦略により侵略・侵入されることのない戦略のことである。そしてその戦略が、〈安定した結果〉(下記)を導くのである。安定化と いっても、それが必ずしも、個体にとって最良になるとは限らない帰結をもたらすこともあることが、ESS理解の重要な鍵になる。
進化的ア ルゴリズム
進化的アルゴリズム(Evolutionary Algorithm, AE)とは、「進化的計算の一分野を意味し、人工知能の一部である。個体群ベースのメタヒューリスティックな最適化アルゴ リズムの総称である。そのメカニズムとして生殖、突然変異、遺伝子組み換え、自然淘汰、適者生存といった進化の仕組みに着想を得たアルゴリズムを用いる。 最適化問題の解の候補群が生物の個体群の役割を果たし、コスト関数によってどの解が生き残るかを決定する。それが繰り返された後、個体群の進化が行われ る」。ウィキ(日本語)には、「遺伝的アルゴリズム」「遺伝的プログラミング」「進化的戦略」「進化的プログラミング」が紹介されている。
種の連続性/非連続性 と進化に関する方法論
最大節約法 Maximum parsimony、近隣結合法 neighbor-joining method, NJ、最尤法(さいゆうほう), Maximum likelihood estimation, MLE、などを解説。
人類進化と先史学
ヒト科(Hominidae) に属する霊長類は8種類(Bornean, Sumatran & Tapanuli orangutan; western gorilla & eastern gorilla; common chimpanzee, bonobo; Human)です

種の起源』は「1859年に(その初版が)出版されたイギリス の博物学者チャールズ・ダーウィン(09~82 年)の著書。……。正式な書名は"On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life"(「自然淘汰(とうた)による種の起原,すなわち生存闘争において有利である種族が保存されることについて」)である。……。本書によってダー ウィンは、進化は下等なものから高等なものへといった直線的な変化ではなく、共通の祖先から系統が枝分かれして多様な生物を生む歴史であるとの考えを示 し、さまざまな証拠をあげて進化が事実であることを論証した。ダーウィンの進化論は広く社会思想にまで大きな影響を与え、本書は世界の主な言語に翻訳され て読まれ続けている」「種の起源」葛西奈津子「知恵蔵」)。

本書の正式な書名は、『自然選択の方途に よる、すなわち生存競争において有利なレースの存続することによる、種の起原』"On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life." - On the Origin of Specie, from Wiki's "On the Origin of Species"(http://darwin-online.org.uk/converted/pdf/1861_OriginNY_F382.pdf


種の起源(ダーウィン著 ; 渡辺政隆訳、による)【Table of contents

第1章 飼育栽培下における変異
第2章 自然条件下での変異
第3章 生存闘争
第4章 自然淘汰
第5章 変異の法則
第6章 学説の難題
第7章 本能
第8章 雑種形成
第9章 地質学的証拠の不完全さについて
第10章 生物の地質学的変遷について
第11章 地理的分布
第12章 地理的分布承前
第13章 生物相互の類縁性、形態学、発生学、痕跡器官
第14章 要約と結論
種の起源』は「1859年に(その初版が)出版されたイギリスの博物学者 チャールズ・ダーウィン(09~82年)の著書。……。正式な書名は"On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life"(「自然淘汰(とうた)による種の起原,すなわち生存闘争において有利である種族が保存されることについて」)である。……。本書によってダー ウィンは、進化は下等なものから高等なものへといった直線的な変化ではなく、共通の祖先から系統が枝分かれして多様な生物を生む歴史であるとの考えを示 し、さまざまな証拠をあげて進化が事実であることを論証した。ダーウィンの進化論は広く社会思想にまで大きな影響を与え、本書は世界の主な言語に翻訳され て読まれ続けている」「種の起源」葛西奈津子「知恵蔵」)。

本書の正式な書名は、『自然選択の方途による、すなわち生存競争において有利なレースの存続することによる、種の起原』"On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life." - On the Origin of Specie, from Wiki's "On the Origin of Species"



リンク

文献

その他の情報


---------------------------------

****

Copyleft, CC, Mitzub'ixi Quq Chi'j, 1996-2099

���[���A�h���X

�����l�ފw